วันอาทิตย์ที่ 16 กันยายน พ.ศ. 2561

11

พันธะโลหะสมบัติ

 พันธะโลหะ (Metallic bonding) เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน อิสระระหว่าง
แลตทิซของอะตอมโลหะดังนั้นพันธะโลหะจึงอาจเปรียบได้กับเกลือที่หลอมเหลวอะตอมของโลหะมีอิเล็กตรอนพิเศษ
เฉพาะในวงโคจรชั้นนอกของมันเทียบกับคาบ(period)หรือระดับพลังงานของพวกมัน อิเล็กตรอนที่เคลื่อนย้ายเหล่านี้
เปรียบได้กับทะเลอิเล็กตรอน(Sea of Electrons) ล้อมรอบแลตทิชขนาดใหญ่ของไอออนบวกพันธะโลหะเทียบได้
กับพันธะโควาเลนต์ที่เป็น นอน-โพลาร์ ที่จะไม่มีในธาตุโลหะบริสุทธ์ หรือมีน้อยมากในโลหะผสม ความแตกต่าง อิเล็ก
โตรเนกาทิวิตีระหว่างอะตอม ซึ่งมีส่วนในปฏิกิริยาพันธะ และอิเล็กตรอนที่เกี่ยวข้องในปฏิกิริยาจะเคลื่อนย้ายข้าม
ระหว่างโครงสร้างผลึกของโลหะ พันธะโลหะเขียนสูตรทางเคมีไม่ได้ เพราะไม่ทราบจำนวนอะตอมที่แท้จริง อาจจะมีเป็น
ล้านๆ อะตอมก็ได้ พันธะโลหะจะมีความสำคัญต่อคุณสมบัติทางฟิสิกส์หลายอย่างของโลหะเช่น

                                      - ความแข็งแรง
                                 - ตีแผ่เป็นแผ่นได้(malleability)
                                 - ดึงเป็นเส้นได้ (ductility)
                                 - นำความร้อนไดดี
                                 - นำไฟฟ้าได้ดีและนำได้ทุกทิศทาง
                                 - เนื้อเป็นเงา (luster)
การเกิดพันธะเคมี
        1. โลหะมีค่าพลังงานไอออไนเซชั่นต่ำมาก แสดงว่าอิเล็กตรอนของโลหะจะหลุดออกไปได้ง่าย เมื่อวาเลนซ์
อิเล็กตรอนหลุดออกไป ก็จะเหลืออนุภาคบวกดังนี้

โลหะทุกอะตอมเป็นตัวให้อิเล็กตรอนทั้งสิ้นดังนั้นจะไม่มีอะตอมใดเลยที่ได้รับอิเล็กตรอน
 2. โลหะมีเวเลนซ์อิเล็กตรอนน้อย ดังนั้นอิเล็กตรอนที่หลุดออกไป จะมีเพียง 1,2,3 ตัวเท่านั้น

        3. โลหะมีค่าโคออร์ดิเนชั่นนัมเบอร์สูง ซึ่งเท่ากับ 8 หรือ12 หมายความว่า อะตอมหนึ่งจะมีอะตอมอื่นรอบล้อม 8 ถึง
 12 อะตอมดังนั้นการนำอิเล็กตรอนมาใช้ร่วมกันเป็นอิเล็กตรอนคู่ในลักษณะของพันธะโคเวเลนต์จึงเป็นไปไม่ได้

           ดังนั้นการเกิดพันธะโลหะควรเป็นไปในลักษณะที่ว่าเวเลนซ์อิเล็กตรอนของอะตอมโลหะ ที่หลุดออกไปจะไม่เป็น
 ของอะตอมใดอะตอมหนึ่งโดยเฉพาะแต่จะเป็นของอะตอมทั้ง หมด โดยที่อิเล็กตรอนจะเคลื่อนที่ไปยังอะตอมนี้บ้าง
 อะตอมโน้นบ้าง ในผลึกของโลหะจึงเป็นการเอาอนุภาคบวกมาเรียงกัน ไว้อย่างมีระเบียบ และมีเวเลนซ์อิเล็กตรอน
 เคลื่อนที่ไปมาได้ทั่วอนุภาคบวกทั้งหมด หรืออาจกล่าวได้ว่า อนุภาคบวกเหล่านั้นจมอยู่ในทะเลอิเล็กตรอน แรงดึงดูด
 ระหว่างอนุภาคบวกกับอิเล็กตรอนเรียกว่า พันธะโลหะ ซึ่งมีแรงยึดเหนี่ยวระหว่างพันธะแข็งแรงมาก

10

พันธะไอออนิก ( Ionic bond )

         พันธะไอออนิก ( Ionic bond ) หมายถึง พันธะระหว่างอะตอมที่อยู่ในสภาพอิออนที่มีประจุตรงกันข้ามกัน ซึ่งเกิด
จากการเคลื่อนย้ายอิเล็กตรอน 11 ตัว หรือมากกว่า จากอิเล็กตรอนวงนอกสุดของอะตอมหนึ่งไปยังอีกอะตอมหนึ่ง เพื่อ
ให้จำนวนอิเล็กตรอนวงนอกสุด ครบออกเตต ซึ่งเกิดขึ้นระหว่างอะตอมของโลหะกับอโลหะ โดยที่โลหะเป็นฝ่ายจ่าย
อิเล็กตรอนในระดับพลังงานชั้นนอกสุดให้กับอโลหะ

        เนื่องจากโลหะมีค่าพลังงานไอออไนเซชันต่ำ และอโลหะมีค่าพลังงานไอออไนเซชันสูง ดังนั้นพันธะไอออนิกจึง
เกิดขึ้นระหว่างโลหะกับอโลหะได้ดี กล่างคือ อะตอมของโลหะให้เวเลนต์อิเล็กตรอนแก่อโลหะ แล้วเกิดเป็นไอออนบวก
และไอออยลบของอโลหะ เพื่อให้เวเลนต์อิเล็กตรอนเป็นแปด แบบก๊าซเฉื่อย ส่วนอโลหะรับเวเลนต์อิเล็กตรอนมานั้นก็
เพื่อปรับตัวเองให้เสถียรแบบก๊าซเฉื่อยเช่นกัน ไอออนบวกกับไอออนลบจึงดึงดูดระหว่างประจุไฟฟ้าต่างกันเกิดเป็น
สารประกอบไอออนิก( Ionic compuond ) ดังนี้
              
  

วันอังคารที่ 11 กันยายน พ.ศ. 2561

9

ธาตุแทรนซิชัน(Transition  elements)


ธาตุแทรนซิชัน  คือ  กลุ่มธาตุที่อยู่ระหว่างหมู่  IIA  กับ  IIIA ซึ่งก็คือธาตุหมู่  B ทั้งหมด  ประกอบด้วยหมู่ IB – VIIIB  รวมทั้ง อินเนอร์แทรนซิชัน  ได้แก่  กลุ่มแลนทาไนด์  และกลุ่มแอกทิไนด์

ธาตุแทรนซิชัน  เป็นธาตุที่ใช้อิเล็กตรในระดับพลังงานย่อย ในการเกิดพันธะ   ยกเว้นธาตุหมู่  2B  ที่ใช้อิเล็กตรอนในระดับพลังงานย่อย  s  ในการเกิดพันธะ

ธาตุแทรนซิชันในคาบที่ 4 ได้แก่  Sc , Ti , V , Cr , Mn , Fe , Co , Ni , Cu , Zn

8

ชนิดของรังสี
สัญลักษณ์
สมบัติ
รังสีแอลฟา
หรืออนุภาคแอลฟา
 หรือ 
เป็นนิวเคลียสของอะตอมฮีเลียม มีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค มีประจุไฟฟ้า +2 มีเลขมวล 4 มีอำนาจทะลุทะลวงต่ำเพียงแค่กระดาษ อากาศที่หนาประมาณ 2-3 cm น้ำที่หนาขนาดมิลลิเมตร หรือโลหะบางๆ ก็สามารถกั้นอนุภาคแอลฟาได้
รังสีบีตา
หรืออนุภาคบีตา
 หรือ 
มีสมบัติเหมือนอิเล็กตรอน มีประจุไฟฟ้า -1 มีมวลเท่ากับอิเล็กตรอน (น้อยมาก) มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า สามารถผ่านแผ่นโลหะบางๆ ได้ และมีความเร็วใกล้เคียงกับความเร็วแสง
รังสีแกมมา
เป็นคลื่อนแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก ไม่มีประจุ ไม่มีมวล เป็นรังสีที่มีพลังงานสูง มีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง สามารถผ่านแผ่นตะกั่วหนา 8 mm หรือแผ่นคอนกรีตหนาๆ ได้

การเกิดปฏิกิริยาของธาตุกัมมันตรังสี 
          การเกิดปฏิกิริยาของธาตุกัมมันตรังสี เรียกว่า ปฏิกิริยานิวเคลียร์ ซึ่งมี 2 ประเภท คือ
          1. ปฏิกิริยาฟิชชัน (Fission reaction) คือ ปฏิกิริยานิวเคลียร์ที่เกิดขึ้น เนื่องจากการยิงอนุภาคนิวตรอนเข้าไปยังนิวเคลียสของธาตุหนัก แล้วทำให้นิวเคลียร์แตกออกเป็นนิวเคลียร์ที่เล็กลงสองส่วนกับให้อนุภาคนิวตรอน 2-3 อนุภาค และคายพลังงานมหาศาลออกมา ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรงที่เรียกว่า ลูกระเบิดปรมาณู (Atomic bomb) เพื่อควบคุมปฏิกิริยาลูกโซ่ไม่ให้เกิดรุนแรงนักวิทยาศาสตร์จึงได้สร้างเตาปฏิกรณ์ปรมาณูเพื่อใช้ในการผลิตกระแสไฟฟ้า
 2. ปฏิกิริยาฟิวชัน (Fusion reaction) คือ ปฏิกิริยานิวเคลียร์ที่นิวเคลียสของธาตุเบาหลอมรวมกันเข้าเป็นนิวเคลียสที่หนักกว่า และมีการคายความร้อนออกมาจำนวนมหาศาลและมากกว่าปฏิกิริยาฟิชชันเสียอีก ปฏิกิริยาฟิวชันที่รู้จักกันดี คือ ปฏิกิริยาระเบิดไฮโดรเจน (Hydrogen bomb) ดังภาพ
ประโยชน์จากการใช้ธาตุกัมมันตรังสี          1. ด้านธรณีวิทยา การใช้คาร์บอน-14  (C-14) คำนวณหาอายุของวัตถุโบราณ
          2. ด้านการแพทย์ ใช้ไอโอดีน-131 (I-131) ในการติดตามเพื่อศึกษาความผิดปกติของต่อมไธรอยด์ โคบอลต์-60 (Co-60) และเรเดียม-226 (Ra-226) ใช้รักษาโรคมะเร็ง
          3. ด้านเกษตรกรรม ใช้ฟอสฟอรัส 32 (P-32) ศึกษาความต้องการปุ๋ยของพืช ปรับปรุงเมล็ดพันธุ์ที่ต้องการ  และใช้โพแทสเซียม-32 (K–32) ในการหาอัตราการดูดซึมของต้นไม้
          4. ด้านอุตสาหกรรม ใช้ธาตุกัมมันตรังสีตรวจหารอยตำหนิ เช่น รอยร้าวของโลหะหรือท่อขนส่งของเหลว ใช้ธาตุกัมมันตรังสีในการ ตรวจสอบและควบคุมความหนาของวัตถุ ใช้รังสีฉายบนอัญมณีเพื่อให้มีสีสันสวยงาม
          5. ด้านการถนอมอาหาร ใช้รังสีแกมมาของธาตุโคบอลต์-60 (Co–60) ปริมาณที่พอเหมาะใช้ทำลายแบคทีเรียในอาหาร  จึงช่วยให้เก็บรักษาอาหารไว้ได้นานขึ้น
          6. ด้านพลังงาน มีการใช้พลังงานความร้อนที่ได้จากปฏิกิริยานิวเคลียร์ในเตาปฏิกรณ์ปรมาณูของยูเรีเนียม-238 (U-238) ต้มน้ำให้กลายเป็นไอ แล้วผ่านไอน้ำไปหมุนกังหัน เพื่อผลิตกระแสไฟฟ้า

7

สภาพขั้วของโมเลกุล

ผลการค้นหารูปภาพสำหรับ สภาพขั้วของพันธะโคเวเลนต์

1. พันธะโคเวเลนต์ที่ไม่มีขั้ว

1.1. อิเล็กตรอนคุ่ร่วมพันธะก็จะอยู่บริเวณกึ่งกลางของอะตอมทั้งสอง ทำให้อะตอมทั้งสองมีขั้วไฟฟ้าสมดุลกัน พันธะโคเวเลนต์นั้นจึงไม่มีขั้วไฟฟ้า

1.2. ตัวอย่างเช่น

1.2.1. CH4

1.2.2. SF6

2. พันธะโคเวเลนต์ที่มีขั้ว

2.1. ที่อะตอมของธาตุใดธาตุหนึ่งมีความสามารถในการดึงดูดอิเล็กตรอนดีกว่า จะมีผลทำให้อิเล็กตรอนคู่ร่วมพันธะไม่อยู่บริเวณกึ่งกลางระหว่างอะตอมทั้งสอง แต่จะเบี่ยงเบนไปทางด้านอะตอมที่สามารถดึงดูดอิเล็กตรอนได้ดีกว่า

2.2. อะตอมทางด้านนี้มีขั้วไฟฟ้าเป็นลบ (เนื่องจากอิเล็กตรอนซึ่งมีประจุลยเอนเอียงมาอยู่ทางด้านมากกว่า) ส่วนด้านที่อยู่ห่างจากอิเล็กตรอนคู่ร่วมพันธะจะมีขั้วไฟฟ้าบวก

2.3. ตัวอย่างเช่น

2.3.1. H2O

2.3.2. NH3

ุ6

พันธะโคเวเลนต์


 
พันธะโควาเลนต์ (Covalent bond) หมายถึง พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม 2 อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต ดังภาพ
เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนข้างนอกร่วมกันระหว่างอะตอมของธาตุหนึ่งกับอีกธาตุหนึ่งแบ่งเป็น 3 ชนิดด้วยกัน
1. พันธะเดี่ยว (Single covalent bond )เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2 CH4 เป็นต้น
2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2 CO2 C2H4 เป็นต้น
3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น N2          C2H2เป็นต้น

5

การจัดเรียงอิเล็กตรอน


จากการเรียงอิเล็กตรอนของธาตุในระดับพลังงานหลักทำให้ทราบว่า
1.จำนวนระดับพลังงานหลักของอิเล็กตรอน ทำให้ทราบว่าธาตุนั้นอยู่คาบใด ถ้าธาตุมีจำนวนระดับพลังงานของอิเล็กตรอนเท่ากัน แสดงว่าธาตุนั้นอยู่ในคาบเดียวกัน เช่น Mg มีเลขอะตอม 12 มีการจัดอิเล็กตรอนในระดับพลังงานดังนี้ 2, 8, 2   Mg มี ระดับพลังงาน  มีเลขอะตอม 16 มีการจัดอิเล็กตรอนในระดับพลังงานดังนี้ 2, 8, 6   S มี 3  ระดับพลังงาน  แสดงว่า Mg และ อยู่ในคาบเดียวกัน
จำนวนเวเลนซ์อิเล็กตรอน หรืออิเล็กตรอนที่อยู่ในระดับพลังงานนอกสุด ทำให้ทราบหมู่ของธาตุ ถ้าธาตุมีจำนวนเวเลนซ์อิเล็กตรอนเท่ากัน แสดงว่าธาตุนั้นอยู่ในหมู่เดียวกัน เช่น Na    มีเลขอะตอม 11     มีการจัดอิเล็กตรอนในระดับพลังงานดังนี้ 2, 8, 1    Na   มีเวเลนซ์อิเล็กตรอนเท่ากับ 1  K   มีเลขอะตอม  19     มีการจัดอิเล็กตรอนในระดับพลังงานดังนี้ 2, 8,8, 1   K มี เวเลนซ์อิเล็กตรอนเท่ากับ   แสดงว่า ธาตุ Na และ อยู่ในหมู่เดียวกัน
การจัดเรียงอิเล็กตรอนในระดับพลังงานย่อย
     การจัดอิเล็กตรอนในระดับพลังงานหลัก ทำให้แต่ละระดับพลังงานมีจำนวนอิเล็กตรอนมากจึงเกิดปัญหาว่าอิเล็กตรอนเหล่านั้นอยู่ในระดับพลังงานเดียวกันได้อย่างไร ทำไมจึงไม่ผลักกัน เพื่อแก้ปัญหาดังกล่าว นักวิทยาศาสตร์จึงได้ศึกษาเกี่ยวกับระดับพลังงานย่อยเพื่อกระจายอิเล็กตรอนในแต่ละระดับพลังงานหลัก เข้าสู่ระดับพลังงานย่อย โดยอาศัยรูปแบบโคจรของอิเล็กตรอนรอบ ๆ นิวเคลียสเป็นเกณฑ์ในการแบ่งอิเล็กตรอนเป็นกลุ่มย่อย ๆ และเรียกรูปแบบวงโคจรนี้ว่าออร์บิทัล (Orbital) โดย ออร์บิทัลจะมีอิเล็กตรอนได้ไม่เกิน อิเล็กตรอน ระดับพลังงานย่อยมี ระดับ คือ s, p, d, f โดยระดับพลังงานย่อยมี
มี ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด อิเล็กตรอน
มี ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด อิเล็กตรอน
มี ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด 10 อิเล็กตรอน
f  มี ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด 14 อิเล็กตรอน
การจัดเรียงอิเล็กตรอนในระดับพลังงานย่อย
1.       จัดอิเล็กตรอนในระดับพลังงานย่อยต่าง ๆ จะต้องจัดเข้าในระดับพลังงานย่อยที่มีพลังงานต่ำสุดก่อนแล้วจึงจัดเข้าสู่ระดับพลังงานย่อยที่มีพลังงานสูงขึ้น(ตามหลักของเอาฟบาว) ดังแผนผังต่อไปนี้
2.  อิเล็กตรอน ตัว ที่อยู่ในออร์บิทัลเดียวกัน จะต้องมีทิศทางการเคลื่อนที่สวนทางกันโดยแสดงทิศทางด้วยลูกศร
ตามหลักการของเพาลี
3.    การจัดอิเล็กตรอนเข้าสู่ระดับพลังงานย่อย        ถ้าอิเล็กตรอนบรรจุอยู่กึ่งหนึ่งหรือบรรจุเต็มออร์บิทัลจะมีโครงสร้างแบบเสถียร    เช่น
                          24Cr  มีการจัดเรียงอิเล็กตรอนในระดับพลังงานย่อย ดังนี้
                          1s2   2s2   2p6   3s2   3p6   4s1   3d5  ไม่ใช่ 1s2   2s2   2p6   3s2   3p6   4s2   3d4      

4

ชนิดของพันธะเคมี

พันธะภายในโมเลกุล
(intramolecular bond)
พันธะระหว่างโมเลกุล
(intermolecular bond)
พันธะโคเวเลนต์ (covalent bonds)
พันธะไฮโดรเจน (hydrogen bonds)
พันธะไอออนิก (ionic bonds)
แรงแวนเดอร์วาลส์ (Van der Waals forces)
พันธะโลหะ ( metallic bonds)
แรงดึงดูดระหว่างโมเลกุล - ไอออน
(molecule-ion attractions)
 พันธะไอออนิก
พันธะไอออนิก ( Ionic bond ) หมายถึงแรงยึดเหนี่ยวที่เกิดในสารประกอบที่เกิดขึ้นระหว่าง 2 อะตอมอะตอมที่มีค่าอิเล็กโตรเนกาติวิตีต่างกันมาก อะตอมที่มีค่าอิเลคโตรเนกาติวิตีน้อยจะให้อิเลคตรอนแก่อะตอมที่มีค่าอิเลคโตรเนกาติวิตีมาก และทำให้อิเล็กตรอนที่อยู่รอบๆ อะตอมครบ 8 (octat rule ) กลายเป็นไอออนบวก และไอออนลบตามลำดับ เกิดแรงดึงดูดทางไฟฟ้าระหว่างไอออนบวกและไอออนลบ และเกิดเป็นโมเลกุลขึ้น เช่น การเกิดสารประกอบ NaCl ดังภาพ

3

โครงสร้างอะตอม

              ดีโมครีตัส ( นักปราชญ์ชาวกรีก) ได้กล่าวว่าทุกสิ่งทุกอย่างประกอบขึ้นจาก อนุภาคที่เล็กมาก  เล็กมากจนไม่สามารถมองเห็นได้   อนุภาคเล็กๆ เหล่านี้จะรวมพวกเข้าด้วยกันโดยวิธิการต่างๆ สำหรับอนุภาคเองนั้นไม่มีการเปลี่ยนแปลงและไม่สามารถจะแตกแยกออกเป็นชิ้นส่วนที่เล็กลงไปอีกได้  ดีโมครี- ตัสตั้งชื่ออนุภาคนี้ว่า อะตอม (Atom)   จากภาษากรีกที่ว่า  atoms  ซึ่งมีความหมายว่า  ไม่สามารถแบ่งแยกได้อีก   ตามความคิดเห็นของเขา  อะตอมเป็นชิ้นส่วนที่เล็กที่สุดของสสารที่สามารถจะคงอยู่ได้

ประโยชน์จากการเรียนเรื่องโครงสร้างอะตอม

1. ทราบสมบัติทางเคมีและสมบัติการเปล่งแสงของธาตุ
2. เราสามารถศึกษาแกแล็กซี่ (galaxy) ดวงดาวและดาวเคราะห์ต่างๆ โดยพิจารณาจากการศึกษาสเปกตรัมที่ได้จากดวงดาว
 แบบจำลองอะตอมของจอห์นดอลตัน


แบบจำลองอะตอมของทอมสัน


แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
แบบจำลองอะตอมของนีลส์โบร์
แบบจำลองอะตอมแบบกลุ่มหมอก

2

เกร็ดความรู้วิชาเคมี เรื่องธาตุ

ในทางเคมี ธาตุ คือ สารบริสุทธิ์ซึ่งประกอบด้วยอนุภาคมูลฐานเลขอะตอม อันเป็นจำนวนของโปรตอนในนิวเคลียสของธาตุนั้น[1]ตัวอย่างธาตุที่คุ้นเคยกัน เช่น คาร์บอน ออกซิเจน อะลูมิเนียม เหล็ก ทองแดง ทองคำ ปรอทและตะกั่ว
จนถึงเดือนพฤษภาคม พ.ศ. 2554 มีการบ่งชี้ธาตุแล้ว 118 ธาตุ ล่าสุดคือ อูนอูนออกเทียม ใน พ.ศ. 2545 ในบรรดาธาตุที่รู้จักกัน 118 ธาตุนั้น มีเพียง 92 ธาตุแรกเท่านั้นที่เชื่อกันว่าเกิดขึ้นเองตามธรรมชาติบนโลก และมี 80 ธาตุที่เสถียรหรือโดยพื้นฐานแล้วเสถียร ขณะที่ที่เหลือเป็นธาตุกัมมันตรังสี ซึ่งจะสลายตัวไปเป็นธาตุที่เบากว่าในระยะเวลาที่แตกต่างกันจากเสี้ยววินาทีไปจนถึงหลายพันล้านปี ธาตุใหม่ ๆ ซึ่งมีเลขอะตอมสูงกว่าที่มีอยู่ตามธรรมชาติ สังเคราะห์ขึ้นจากผลิตภัณฑ์ของปฏิกิริยานิวเคลียร์
ไฮโดรเจนและฮีเลียมเป็นธาตุที่พบได้มากที่สุดในเอกภพ อย่างไรก็ดี ออกซิเจนเป็นธาตุที่พบได้มากที่สุดในเปลือกโลก ประกอบกันเป็นครึ่งหนึ่งของมวลทั้งหมด แม้สสารเคมีทั้งหมดที่ทราบกันจะประกอบด้วยธาตุอันหลากหลายเหล่านี้ แต่สสารเคมีนั้นประกอบกันขึ้นเป็นเพียงราวร้อยละ 15 ของสสารทั้งหมดในเอกภพ ส่วนที่เหลือนั้นเป็นสสารมืด ซึ่งมิได้ประกอบด้วยธาตุเคมีที่มนุษย์รู้จัก เพราะไม่มีโปรตอนนิวตรอนหรืออิเล็กตรอน

1

  สาร ( Matter ) หมายถึงสิ่งที่มีมวล ต้องการที่อยู่ และ สามารถสัมผัสได้โดยประสาทสัมผัสทั้ง 5 เช่น ดิน น้ำ อากาศ ฯลฯ ภายใน

สสารเป็นเนื้อของสสาร เรียกว่า สาร ( Substance )สาร ( Substance ) คือ สสารที่ทราบสมบัติ หรือ สสารที่จะศึกษา ดังนั้นจึงเป็นสสารที่เฉพาะเจาะจง ซึ่งจะมีสมบัติของสาร
2 ประเภท คือ
– สมบัติกายภาพ ( Physical Property )
2 ประเภท คือ– สมบัติกายภาพ ( Physical Property ) หมายถึง สมบัติที่สังเกตได้จากลักษณะภายนอก และ เกี่ยวกับวิธีการทางฟิสิกส์ เช่น ความหนาแน่น , จุดเดือด , จุดหลอมเหลว– สมบัติทางเคมี ( Chemistry Property )ความหนาแน่น , จุดเดือด , จุดหลอมเหลว– สมบัติทางเคมี ( Chemistry Property ) หมายถึง สมบัติที่เกิดขึ้นจากการทำปฏิกิริยาเคมี เช่น การติดไฟ , การเป็นสนิม , ความเป็นกรด – เบส ของสาร

ที่มา:https://sittichok2890.wordpress.com/%E0%B9%80%E0%B8%81%E0%B8%A3%E0%B9%87%E0%B8%94%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%A3%E0%B8%B9%E0%B9%89%E0%B8%A7%E0%B8%B4%E0%B8%8A%E0%B8%B2%E0%B9%80%E0%B8%84%E0%B8%A1%E0%B8%B5/

11

พันธะโลหะสมบัติ  พันธะโลหะ ( Metallic bonding)   เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน อิสระระหว่าง แลตทิซของ...